For an integer w ≥ 2, a radix 2 representation is called a width-w nonadjacent form (w-NAF, for short) if each nonzero digit is an odd integer with absolute value less than 2w−1 , and of any w consecutive digits, at most one is nonzero. In elliptic curve cryptography, the w-NAF window method is used to efficiently compute nP where n is an integer and P is an elliptic curve point. We introduce a new family of radix 2 representations which use the same digits as the w-NAF but have the advantage that they result in a window method which uses less memory. This memory savings results from the fact that these new representations can be deduced using a very simple left-to-right algorithm. Further, we show that like the w-NAF, these new representations have a minimal number of nonzero digits. 1 Window Methods An operation fundamental to elliptic curve cryptography is scalar multiplication; that is, computing nP for an integer, n, and an elliptic curve point, P. A number of different algor...
James A. Muir, Douglas R. Stinson