Abstract. In this paper, we propose a new definition and an exact algorithm for the discrete bisector function, which is an important tool for analyzing and filtering Euclidean skeletons. We also introduce a new thinning algorithm which produces homotopic discrete Euclidean skeletons. These algorithms, which are valid both in 2D and 3D, are integrated in a skeletonization method which is based on exact transformations, allows the filtering of skeletons, and is computationally efficient.