Abstract. Decision making in engineering design can be effectively addressed by using genetic algorithms to solve multi-objective problems. These multi-objective genetic algorithms (MOGAs) are well suited to implementation in a Service Oriented Architecture. Often the evaluation process of the MOGA is compute-intensive due to the use of a complex computer model to represent the real-world system. The emerging paradigm of Grid Computing offers a potential solution to the computeintensive nature of this objective function evaluation, by allowing access to large amounts of compute resources in a distributed manner. This paper presents a grid-enabled framework for multi-objective optimisation using genetic algorithms (MOGA-G) to aid decision making in engineering design.
Alex Shenfield, Peter J. Fleming