In this paper, we consider the problem of color restoration using statistical priors. This is applied to color recovery for underwater images, using an energy minimization formulation. Underwater images present a challenge when trying to correct the blue-green monochrome look to bring out the color we know marine life has. For aquatic robot tasks, the quality of the images is crucial and needed in real-time. Our method enhances the color of the images by using a Markov Random Field (MRF) to represent the relationship between color depleted and color images. The parameters of the MRF model are learned from the training data and then the most probable color assignment for each pixel in the given color depleted image is inferred by using belief propagation (BP). This allows the system to adapt the color restoration algorithm to the current environmental conditions and also to the task requirements. Experimental results on a variety of underwater scenes demonstrate the feasibility of our m...