This paper describes the design and evaluation of the PCA (Plastic Cell Architecture) cell, which implements a novel space allocation method. PCA is a dynamically reconfigurable architecture which exceeds the FPGA (Field Programmable Gate Array) in flexibility and generality. Circuit dynamically reconfiguration is achieved as administrators manage the heap areas. But, because objects operate and require new space in parallel, it is difficult to manage them collectively. So, we introduced the concept of pressure, which enables space allocation. As a simulation result, we found that this new method, which relies on pressure commands, could solve the problems of object management efficiently. We designed the PCA cell with space allocation capability. Consequently, the number of gates per PCA cell is 200, and the maximum delay time per cell is 3.55 ns. Moreover, the 3 × 3 PCA cell processing of six space-allocation commands consumes 306.3µW.