In a previous paper, we have introduced a general approach for connecting two many-sorted theories through connection functions that behave like homomorphisms on the shared signature, and have shown that, under appropriate algebraic conditions, decidability of the validity of universal formulae in the component theories transfers to their connection. This work generalizes decidability transfer results for socalled E-connections of modal logics. However, in this general algebraic setting, only the most basic type of E-connections could be handled. In the present paper, we overcome this restriction by looking at pairs of connection functions that are adjoint pairs for partial orders defined in the component theories.