Much recent research has focused on the applications of games with ω-regular objectives in the control and verification of reactive systems. However, many of the game-based models are ill-suited for these applications, because they assume that each player has complete information about the state of the system (they are “perfect-information” games). This is because in many situations, a controller does not see the private state of the plant. Such scenarios are naturally modeled by “partial-information” games. On the other hand, these games are intractable; for example, partial-information games with simple reachability objectives are 2EXPTIME-complete. We study the intermediate case of “semiperfect-information” games, where one player has complete knowledge of the state, while the other player has only partial knowledge. This model is appropriate in control situations where a controller must cope with plant behavior that is as adversarial as possible, i.e., the controller ...
Krishnendu Chatterjee, Thomas A. Henzinger