We focus on the handling of overlapping solutions in evolutionary multiobjective optimization (EMO) algorithms. First we show that there exist a large number of overlapping solutions in each population when EMO algorithms are applied to multiobjective combinatorial optimization problems with only a few objectives. Next we implement three strategies to handle overlapping solutions. One strategy is the removal of overlapping solutions in the objective space. In this strategy, overlapping solutions in the objective space are removed during the generation update phase except for only a single solution among them. As a result, each solution in the current population has a different location in the objective space. Another strategy is to remove overlapping solutions so that each solution in the current population has a different location in the decision space. The other strategy is the modification of Pareto ranking where overlapping solutions in the objective space are allocated to differe...