Abstract. Numerical simulations can be the key to the thorough understanding of the multi-dimensional nature of transient detonation waves. But the accurate approximation of realistic detonations is extremely demanding, because a wide range of different scales needs to be resolved. In this paper, we summarize our successful efforts in simulating multidimensional detonations with detailed and highly stiff chemical kinetics on recent parallel machines with distributed memory, especially on clusters of standard personal computers. We explain the design of AMROC, a freely available dimension-independent mesh adaptation framework for time-explicit Cartesian finite volume methods on distributed memory machines, and discuss the locality-preserving rigorous domain decomposition technique it employs. The framework provides a generic implementation of the blockstructured adaptive mesh refinement algorithm after Berger and Collela designed especially for the solution of hyperbolic fluid fl...