We introduce the notion of hierarchical group signatures. This is a proper generalization of group signatures, which allows multiple group managers organized in a tree with the signers as leaves. For a signer that is a leaf of the subtree of a group manager, the group manager learns which of its children that (perhaps indirectly) manages the signer. We provide definitions for the new notion and construct a scheme that is provably secure given the existence of a family of trapdoor permutations. We also present a construction which is relatively practical, and prove its security in the random oracle model under the strong RSA assumption and the DDH assumption.