We are researching for real-time hand shape estimation, which we are going to apply to user interface and interactive applications. We have employed a computer vision approach, since unwired sensing provides restriction-free observation, or a natural way of sensing. The problem is that since a human hand has many joints, it has geometrically high degrees of freedom, which makes hand shape estimation difficult. For example, we have to deal with a self-occlusion problem and a large amount of computation. At the same time, a human hand has several physical constraints, i.e., each joint has a movable range and interdependence, which can potentially reduce the search space of hand shape estimation. This paper proposes a novel method to estimate 3D hand shapes in real-time by using shape features acquired from camera images and physical hand constraints heuristically introduced. We have made preliminary experiments using multiple cameras under uncomplicated background. We show experimental r...