Head pose and gesture offer several key conversational grounding cues and are used extensively in face-to-face interaction among people. We investigate how dialog context from an embodied conversational agent (ECA) can improve visual recognition of user gestures. We present a recognition framework which (1) extracts contextual features from an ECA’s dialog manager, (2) computes a prediction of head nod and head shakes, and (3) integrates the contextual predictions with the visual observation of a vision-based head gesture recognizer. We found a subset of lexical, punctuation and timing features that are easily available in most ECA architectures and can be used to learn how to predict user feedback. Using a discriminative approach to contextual prediction and multi-modal integration, we were able to improve the performance of head gesture detection even when the topic of the test set was significantly different than the training set. Categories and Subject Descriptors I.2.10 [Arti...
Louis-Philippe Morency, Candace L. Sidner, Christo