Sciweavers

ICNC
2005
Springer

Training Data Selection for Support Vector Machines

14 years 6 months ago
Training Data Selection for Support Vector Machines
Abstract. In recent years, support vector machines (SVMs) have become a popular tool for pattern recognition and machine learning. Training a SVM involves solving a constrained quadratic programming problem, which requires large memory and enormous amounts of training time for large-scale problems. In contrast, the SVM decision function is fully determined by a small subset of the training data, called support vectors. Therefore, it is desirable to remove from the training set the data that is irrelevant to the final decision function. In this paper we propose two new methods that select a subset of data for SVM training. Using real-world datasets, we compare the effectiveness of the proposed data selection strategies in terms of their ability to reduce the training set size while maintaining the generalization performance of the resulting SVM classifiers. Our experimental results show that a significant amount of training data can be removed by our proposed methods without degradi...
Jigang Wang, Predrag Neskovic, Leon N. Cooper
Added 27 Jun 2010
Updated 27 Jun 2010
Type Conference
Year 2005
Where ICNC
Authors Jigang Wang, Predrag Neskovic, Leon N. Cooper
Comments (0)