In this paper, we propose a novel congestion control mechanism of TCP, by using an inline network measurement technique. By using information of available bandwidth of a network path between sender and receiver hosts, we construct quite a different congestion control mechanism from the traditional TCP Reno and its variants, based on logistic and Lotka-Volterra models from biophysics. The proposed mechanism is intensively investigated through analysis and simulation evaluations, and we show the effectiveness of the proposed mechanism in terms of scalability with the network bandwidth, convergence time, fairness among connections, and stability.