Supercomputer architects strive to maximize the performance of scientific applications. Unfortunately, the large, unwieldy nature of most scientific applications has lead to the creation of artificial benchmarks, such as SPEC-FP, for architecture research. Given the impact that these benchmarks have on architecture research, this paper seeks an understanding of how they relate to real-world applications within the Department of Energy. Since the memory system has been found to be a particularly key issue for many applications, the focus of the paper is on the relationship between how the SPEC-FP benchmarks and DOE applications use the memory system. The results indicate that while the SPEC-FP suite is a well balanced suite, supercomputing applications typically demand more from the memory system and must perform more “other work” (in the form of integer computations) along with the floating point operations. The SPEC-FP suite generally demonstrates slightly more temporal local...
Richard C. Murphy, Arun Rodrigues, Peter M. Kogge,