Parallel I/O needs to keep pace with the demand of high performance computing applications on systems with ever-increasing speed. Exploiting high-end interconnect technologies to reduce the network access cost and scale the aggregated bandwidth is one of the ways to increase the performance of storage systems. In this paper, we explore the challenges of supporting parallel file system with modern features of Quadrics, including user-level communication and RDMA operations. We design and implement a Quadrics-capable version of a parallel file system (PVFS2). Our design overcomes the challenges imposed by Quadrics static communication model to dynamic client/server architectures. Quadrics QDMA and RDMA mechanisms are integrated and optimized for high performance data communication. Zero-copy PVFS2 list IO is achieved with a Single Event Associated MUltiple RDMA (SEAMUR) mechanism. Experimental results indicate that the performance of PVFS2, with Quadrics user-level protocols and RDMA ...
Weikuan Yu, Shuang Liang, Dhabaleswar K. Panda