Prediction is an important task in robot motor control where it is used to gain feedback for a controller. With such a self-generated feedback, which is available before sensor readings from an environment can be processed, a controller can be stabilized and thus the performance of a moving robot in a real-world environment is improved. So far, only experiments with artificially generated data have shown good results. In a sequence of experiments we evaluate whether a liquid state machine in combination with a supervised learning algorithm can be used to predict ball trajectories with input data coming from a video camera mounted on a robot participating in the RoboCup. This pre-processed video data is fed into a recurrent spiking neural network. Connections to some output neurons are trained by linear regression to predict the position of a ball in various time steps ahead. Our results support the idea that learning with a liquid state machine can be applied not only to designed data...