In this paper, we present an empirical study that utilizes morph-syntactical information to improve translation quality. With three kinds of language pairs matched according to morph-syntactical similarity or difference, we investigate the effects of various morpho-syntactical information, such as base form, part-of-speech, and the relative positional information of a word in a statistical machine translation framework. We learn not only translation models but also word-based/class-based language models by manipulating morphological and relative positional information. And we integrate the models into a log-linear model. Experiments on multilingual translations showed that such morphological information as part-of-speech and base form are effective for improving performance in morphologically rich language pairs and that the relative positional features in a word group are useful for reordering the local word orders. Moreover, the use of a class-based n-gram language model improves ...