The merit of phrase-based statistical machine translation is often reduced by the complexity to construct it. In this paper, we address some issues in phrase-based statistical machine translation, namely: the size of the phrase translation table, the use of underlying translation model probability and the length of the phrase unit. We present Level-Of-Detail (LOD) approach, an agglomerative approach for learning phrase-level alignment. Our experiments show that LOD approach significantly improves the performance of the word-based approach. LOD demonstrates a clear advantage that the phrase translation table grows only sub-linearly over the maximum phrase length, while having a performance comparable to those of other phrase-based approaches.