Many cells in the primary visual cortex respond differently when a stimulus is placed outside their classical receptive field (CRF) compared to the stimulus within the CRF alone, permitting integration of information at early levels in the visual processing stream that may play a key role in intermediate-level visual tasks, such a perceptual popout [11], contextual modulation [7, 3, 4], and junction detection [13, 3, 5]. In this paper we construct a computational model in programming environment TiViPE [9] of orientation contrast type of cells and demonstrate that the model closely resembles the functional behavior of the neuronal responses of non orientation (within the CRF) sensitive 4Cβ cells [5], and give an explanation of the indirect information flow in V1 that explains the behavior of orientation contrast sensitivity.
Tino Lourens, Emilia I. Barakova