Abstract. In highly dynamic environments with uncertainty the elaboration of long or rigid plans is useless because the constructed plans are frequently dismissed by the arrival or new unexpected situations; in these cases, a “second-best” plan could rescue the situation. We present a new real-time planning method where we take into consideration the number and quality of future options of the next action to choose, in contrast to most planning methods that just take into account the intrinsic value of the chosen plan or the maximum valued future option. We apply our method to the Robocup simulated soccer competition, which is indeed highly dynamic and involves uncertainty. We propose a specific architecture for implementing this method in the context of a player agent in the Robocup competition, and we present experimental evidence showing the potential of our method.
Ramón F. Brena, Emmanuel Martinez