Abstract. Increased power density, hot-spots, and temperature gradients are severe limiting factors for today’s state-of-the-art microprocessors. However, the flexibility offered by the multiple cores in future Chip Multiprocessors (CMPs) results in a great opportunity for controlling the chip thermal characteristics. When a process is to be assigned to a core, a thermal-aware scheduling policy may be invoked to determine which core is the most appropriate. In this paper we present TSIC, Thermal SImulator for CMPs, which is a fully parameterizable, user-friendly tool that allows us to easily test different CMP configurations, application characteristics, and scheduling policies. We also present a case study where the use of TSIC together with simple thermal-aware scheduling policies allows us to conclude that there is potential for improving the thermal behavior of a CMP by implementing new process scheduling policies.