Abstract. Automatic liver segmentation from abdominal computed tomography (CT) images is one of the most important steps for computeraided diagnosis (CAD) for liver CT. However, the liver must be separated manually or semi-automatically since surface features of the liver and partial-volume effects make automatic discrimination from other adjacent organs or tissues very difficult. In this paper, we present an unsupervised liver segmentation algorithm with three steps. In the preprocessing, we simplify the input CT image by estimating the liver position using a prior knowledge about the location of the liver and by performing multilevel threshold on the estimated liver position. The proposed scheme utilizes the multiscale morphological filter recursively with region-labeling and clustering to detect the search range for deformable contouring. Most of the liver contours are positioned within the search range. In order to perform an accurate segmentation, we produce the gradient-label m...