To detect and defend against Internet worms, researchers have long hoped to have a safe convenient environment to unleash and run real-world worms for close observation of their infection, damage, and propagation. However, major challenges exist in realizing such “worm playgrounds”, including the playgrounds’ fidelity, confinement, scalability, as well as convenience in worm experiments. In this paper, we present a virtualization-based platform to create virtual worm playgrounds, called vGrounds, on top of a physical infrastructure. A vGround is an all-software virtual environment dynamically created for a worm attack. It has realistic end-hosts and network entities, all realized as virtual machines (VMs) and confined in a virtual network (VN). The salient features of vGround include: (1) high fidelity supporting real worm codes exploiting real vulnerable services, (2) strict confinement making the real Internet totally invisible and unreachable from inside a vGround, (3) hi...
Xuxian Jiang, Dongyan Xu, Helen J. Wang, Eugene H.