Abstract. We present a study on a rough set based approach for feature selection. Instead of using significance or support, Parameterized Average Support Heuristic (PASH) considers the overall quality of the potential set of rules. It will produce a set of rules with balanced support distribution over all decision classes. Adjustable parameters of PASH can help users with different levels of approximation needs to extract predictive rules that may be ignored by other methods. This paper finetunes the PASH heuristic and provides experimental results to PASH.