Abstract Abstract. Recent work in the analysis of randomized approximation algorithms for NP-hard optimization problems has involved approximating the solution to a problem by the solution of a related sub-problem of constant size, where the sub-problem is constructed by sampling elements of the original problem uniformly at random. In light of interest in problems with a heterogeneous structure, for which uniform sampling might be expected to yield sub-optimal results, we investigate the use of nonuniform sampling probabilities. We develop and analyze an algorithm which uses a novel sampling method to obtain improved bounds for approximating the Max-Cut of a graph. In particular, we show that by judicious choice of sampling probabilities one can obtain error bounds that are superior to the ones obtained by uniform sampling, both for weighted and unweighted versions of Max-Cut. Of at least as much interest as the results we derive are the techniques we use. The first technique is a me...
Petros Drineas, Ravi Kannan, Michael W. Mahoney