Cut elimination is a central result of the proof theory. This paper proposes a new approach for proving the theorem for Gentzen’s intuitionistic sequent calculus LJ, that relies on completeness of the cutfree calculus with respect to Kripke Models. The proof defines a general framework to extend the cut elimination result to other intuitionistic deduction systems, in particular to deduction modulo provided the rewrite system verifies some properties. We also give an example of rewrite system for which cut elimination holds but that doesn’t enjoys proof normalization.