In a collaborative environment, knowledge about collaborators’ skills is an important factor when determining which team members should perform a task. However, this knowledge may be incomplete or uncertain. In this paper, we extend our ETAPP (Environment-Task-Agents-Policy-Protocol) collaboration framework by modeling team members that exhibit non-deterministic performance, and comparing two alternative ways of using these models to assign agents to tasks. Our simulation-based evaluation shows that performance variability has a large impact on task performance, and that task performance is improved by consulting agent models built from a small number of observations of agents’ recent performance.