While methods based on partial differential equations (PDEs) and variational techniques are powerful tools for denoising and inpainting digital images, their use for image compression was mainly focussing on pre- or postprocessing so far. In our paper we investigate their potential within the decoding step. We start with the observation that edge-enhancing diffusion (EED), an anisotropic nonlinear diffusion filter with a diffusion tensor, is well-suited for scattered data interpolation: Even when the interpolation data are very sparse, good results are obtained that respect discontinuities and satisfy a maximum– minimum principle. This property is exploited in our studies on PDE-based image compression. We use an adaptive triangulation method based on B-tree coding for removing less significant pixels from the image. The remaining points serve as scattered interpolation data for the EED process. They can be coded in a compact and elegant way that reflects the B-tree structure. Our...