The need to regularize tensor fields arise recently in various applications. We treat in this paper tensors that belong to matrix Lie groups. We formulate the problem of these SO(N) flows in terms of the principal chiral model (PCM) action. This action is defined over a Lie group manifold. By minimizing the PCM action with respect to the group element, we obtain the equations of motion for the group element (or the corresponding connection). Then, by writing the gradient descent equations we obtain the PDE for the Lie group flows. We use these flows to regularize in particular the group of N-dimensional orthogonal matrices with determinant one i.e. SO(N). This type of regularization preserves their properties (i.e., the orthogonality and the determinant). A special numerical scheme that preserves the Lie group structure is used. However, these flows regularize the tensor field isotropically and therefore discontinuities are not preserved. We modify the functional and thereby the...
Yaniv Gur, Nir A. Sochen