Sciweavers

WINE
2005
Springer

Mining Stock Market Tendency Using GA-Based Support Vector Machines

14 years 6 months ago
Mining Stock Market Tendency Using GA-Based Support Vector Machines
In this study, a hybrid intelligent data mining methodology, genetic algorithm based support vector machine (GASVM) model, is proposed to explore stock market tendency. In this hybrid data mining approach, GA is used for variable selection in order to reduce the model complexity of SVM and improve the speed of SVM, and then the SVM is used to identify stock market movement direction based on the historical data. To evaluate the forecasting ability of GASVM, we compare its performance with that of conventional methods (e.g., statistical models and time series models) and neural network models. The empirical results reveal that GASVM outperforms other forecasting models, implying that the proposed approach is a promising alternative to stock market tendency exploration.
Lean Yu, Shouyang Wang, Kin Keung Lai
Added 28 Jun 2010
Updated 28 Jun 2010
Type Conference
Year 2005
Where WINE
Authors Lean Yu, Shouyang Wang, Kin Keung Lai
Comments (0)