Sciweavers

WRAC
2005
Springer

Distributed Agent Evolution with Dynamic Adaptation to Local Unexpected Scenarios

14 years 4 months ago
Distributed Agent Evolution with Dynamic Adaptation to Local Unexpected Scenarios
Abstract. This paper introduces a novel framework for designing multiagent systems, called “Distributed Agent Evolution with Dynamic Adaptation to Local Unexpected Scenarios” (DAEDALUS). Traditional approaches to designing multi-agent systems are offline (in simulation), and assume the presence of a global observer. In the online (real world), there may be no global observer, performance feedback may be delayed or perturbed by noise, agents may only interact with their local neighbors, and only a subset of agents may experience any form of performance feedback. Under these circumstances, it is much more difficult to design multi-agent systems. DAEDALUS is designed to address these issues, by mimicking more closely the actual dynamics of populations of agents moving and interacting in a task environment. We use two case studies to illustrate the feasibility of this approach.
Suranga Hettiarachchi, William M. Spears, Derek Gr
Added 28 Jun 2010
Updated 28 Jun 2010
Type Conference
Year 2005
Where WRAC
Authors Suranga Hettiarachchi, William M. Spears, Derek Green, Wesley Kerr
Comments (0)