Increased integration in the form of multiple processor cores on a single die, relatively constant die sizes, shrinking power envelopes, and emerging applications create a new challenge for processor architects. How to build a processor that provides high single-thread performance and enables multiple of these to be placed on the same die for high throughput while dynamically adapting for future applications? Conventional approaches for high single-thread performance rely on large and complex cores to sustain a large instruction window for memory tolerance, making them unsuitable for multi-core chips. We present Continual Flow Pipelines (CFP) as a new nonblocking processor pipeline architecture that achieves the performance of a large instruction window without requiring cycle-critical structures such as the scheduler and register file to be large. We show that to achieve benefits of a large instruction window, inefficiencies in management of both the scheduler and register file must ...
Srikanth T. Srinivasan, Ravi Rajwar, Haitham Akkar