In this paper, we take the sample-path approach in analyzing the asymptotic behavior of single-hop bandwidth estimation under bursty cross-traffic and show that these results are provably different from those observed under fluid models of prior work. This difference, which we call the probing bias, is one of the previously unknown factors that can cause measurement inaccuracies in available bandwidth estimation. We present an analytical formulation of “packet probing,” based on which we derive several major properties of the probing bias. We then experimentally observe the probing bias and investigate its quantitative relationship to several deciding factors such as probing packet size, probing train length, and cross-traffic burstiness. Both our analytical and experimental results show that the probing bias vanishes as the packet-train length or packet size increases. The vanishing rate is decided by the burstiness of cross-traffic. Categories and Subject Descriptors C.2.3 [N...