We present Byzantine Disk Paxos, an asynchronous shared-memory consensus algorithm that uses a collection of n > 3t disks, t of which may fail by becoming non-responsive or arbitrarily corrupted. We give two constructions of this algorithm; that is, we construct two different t-tolerant (i.e., tolerating up to t disk failures) building blocks, each of which can be used, along with a leader oracle, to solve consensus. One building block is a t-tolerant wait-free shared safe register. The second building block is a t-tolerant regular register that satisfies a weaker termination (liveness) condition than wait freedom: its write operations are wait-free, whereas its read operations are guaranteed to return only in executions with a finite number of writes. We call this termination condition finite writes (FW), and show that wait-free consensus is solvable with FW-terminating registers and a leader oracle. We construct each of these ttolerant registers from n > 3t base registers,...