Abstract. This article deals with global constraints for which the set of solutions can be recognized by an extended finite automaton whose size is bounded by a polynomial in n, where n is the number of variables of the corresponding global constraint. By reformulating the automaton as a conjunction of signature and transition constraints we show how to systematically obtain a filtering algorithm. Under some restrictions on the signature and transition constraints this filtering algorithm achieves arc-consistency. An implementation based on some constraints as well as on the metaprogramming facilities of SICStus Prolog is available. For a restricted class of automata we provide a filtering algorithm for the relaxed case, where the violation cost is the minimum number of variables to unassign in order to get back to a solution.