Sciweavers

DAWAK
2004
Springer

SCLOPE: An Algorithm for Clustering Data Streams of Categorical Attributes

14 years 5 months ago
SCLOPE: An Algorithm for Clustering Data Streams of Categorical Attributes
Clustering is a difficult problem especially when we consider the task in the context of a data stream of categorical attributes. In this paper, we propose SCLOPE, a novel algorithm based on CLOPE’s intuitive observation about cluster histograms. Unlike CLOPE however, our algorithm is very fast and operates within the constraints of a data stream environment. In particular, we designed SCLOPE according to the recent CluStream framework. Our evaluation of SCLOPE shows very promising results. It consistently outperforms CLOPE in speed and scalability tests on our data sets while maintaining high cluster purity; it also supports cluster analysis that other algorithms in its class do not.
Kok-Leong Ong, Wenyuan Li, Wee Keong Ng, Ee-Peng L
Added 01 Jul 2010
Updated 01 Jul 2010
Type Conference
Year 2004
Where DAWAK
Authors Kok-Leong Ong, Wenyuan Li, Wee Keong Ng, Ee-Peng Lim
Comments (0)