Abstract. Adhesive high-level replacement (HLR) categories and systems are introduced as a new categorical framework for graph transformation in a broad sense, which combines the well-known concept of HLR systems with the new concept of adhesive categories introduced by Lack and Soboci´nski. In this paper we show that most of the HLR properties, which had been introduced ad hoc to generalize some basic results from the category of graphs to high-level structures, are valid already in adhesive HLR categories. As a main new result in a categorical framework we show the Critical Pair Lemma for local confluence of transformations. Moreover we present a new version of embeddings and extensions for transformations in our framework of adhesive HLR systems.