Abstract. The performance of face recognition systems that use twodimensional images is dependent on consistent conditions such as lighting, pose, and facial appearance. We are developing a face recognition system that uses three-dimensional depth information to make the system more robust to these arbitrary conditions. We have developed a face matching system that automatically correlates points in three dimensions between two 2.5D range images of different views. A hybrid Iterative Closest Point (ICP) scheme is proposed to integrate two classical ICP algorithms for fine registration of the two scans. A robust similarity metric is defined for matching purpose. Results are provided on a preliminary database of 10 subjects (one training image per subject) containing frontal face images of neutral expression with a testing database of 63 scans that varied in pose, expression and lighting.
Xiaoguang Lu, Dirk Colbry, Anil K. Jain