This work discusses an Evolvable Hardware (EHW) platform for the intrinsic evolution of analog electronic circuits. The EHW analog platform, named PAMA-NG (Programmable Analog Multiplexer Array-Next Generation), is a reconfigurable platform that consists of integrated circuits whose internal connections can be programmed by Evolutionary Computation techniques, such as Genetic Algorithms (GAs), to synthesize circuits. The PAMANG is classified as Field Programmable Analog Array (FPAA). FPAAs are reconfigurable devices that will become the building blocks of a forthcoming class of hardware, with the important features of self-adaptation and selfrepairing, through automatic reconfiguration. The PAMA-NG platform architectural details, concepts and characteristics are discussed. Two case studies, with promising results, are described: a logarithmic amplifier and an S membership function circuit of a fuzzy logic controller.