A new data-driven approach to atmospheric sensing and detecting/ predicting hazardous atmospheric phenomena is presented. Dense networks of small high-resolution radars are deployed with sufficient density to spatially resolve tornadoes and other dangerous storm events and overcome the earth curvature-induced blockage that limits today’s ground-radar networks. A distributed computation infrastructure manages both the scanning of the radar beams and the flow of data processing by dynamically optimizing system resources in response to multiple, conflicting end-user needs. In this paper, we provide a high-level overview of a system architecture embodying this new approach towards sensing, detection and prediction. We describe the system’s data rates, and overview various modes in which the system can operate.
Jerry Brotzge, V. Chandresakar, Kelvin Droegemeier