The interaction between human beings and computers will be more natural if computers are able to perceive and respond to human non-verbal communication such as emotions. Although several approaches have been proposed to recognize human emotions based on facial expressions or speech, relatively limited work has been done to fuse these two, and other, modalities to improve the accuracy and robustness of the emotion recognition system. This paper analyzes the strengths and the limitations of systems based only on facial expressions or acoustic information. It also discusses two approaches used to fuse these two modalities: decision level and feature level integration. Using a database recorded from an actress, four emotions were classified: sadness, anger, happiness, and neutral state. By the use of markers on her face, detailed facial motions were captured with motion capture, in conjunction with simultaneous speech recordings. The results reveal that the system based on facial expressi...