Wireless sensor networks provide an attractive approach to spatially monitoring environments. Wireless technology makes these systems relatively flexible, but also places heavy demands on energy consumption for communications. This raises a fundamental trade-off: using higher densities of sensors provides more measurements, higher resolution and better accuracy, but requires more communications and processing. This paper proposes a new approach, called “backcasting,” which can significantly reduce communications and energy consumption while maintaining high accuracy. Backcasting operates by first having a small subset of the wireless sensors communicate their information to a fusion center. This provides an initial estimate of the environment being sensed, and guides the allocation of additional network resources. Specifically, the fusion center backcasts information based on the initial estimate to the network at large, selectively activating additional sensor nodes in order ...