Exophthalmia is characterized by a protrusion of the eyeball. The most frequent surgery consists in an osteotomy of the orbit walls to increase the orbital volume and to retrieve a normal eye position. Only a few clinical observations have estimated the relationship between the eyeball backward displacement and the decompressed fat tissue volume. This paper presents a method to determine the relationship between the eyeball backward displacement and the osteotomy surface made by the surgeon, in order to improve exophthalmia reduction planning. A poroelastic finite element model involving morphology, material properties of orbital components, and surgical gesture is proposed to perform this study on 12 patients. As a result, the osteotomy surface seems to have a non-linear influence on the backward displacement. Moreover, the FE model permits to give a first estimation of an average law linking those two parameters. This law may be helpful in a surgical planning framework.