— Clustering sensor nodes increases the scalability and energy efficiency of communications among them. In hostile environments, unexpected failures or attacks on cluster heads (through which communication takes place) may partition the network or degrade application performance. In this work, we propose a new approach, REED (Robust Energy Efficient Distributed clustering), for clustering sensors deployed in hostile environments. Our primary objective is to construct a k-faulttolerant (i.e., k-connected) network, where k is a constant determined by the application. Fault tolerance can be achieved by selecting k independent sets of cluster heads (i.e., cluster head overlays) on top of the physical network, so that each node can quickly switch to other cluster heads in case of failures or attacks on its current cluster head. The independent cluster head overlays also provide multiple vertex-disjoint routing paths for load balancing and security. Network lifetime is prolonged by selec...