Over recent years, various semantics have been proposed for dealing with updates in the setting of logic programs. The availability of different semantics naturally raises the question of which are most adequate to model updates. A systematic approach to face this question is to identify general principles against which such semantics could be evaluated. In this paper we motivate and introduce a new such principle – the refined extension principle – which is complied with by the stable model semantics for (single) logic programs. It turns out that none of the existing semantics for logic program updates, even though based on stable models, complies with this principle. For this reason, we define a refinement of the dynamic stable model semantics for Dynamic Logic Programs that complies with the principle.