Anthropologists have yet to adequately investigate the evolution of food sharing despite its prevalence among contemporary human societies. As an initial step toward rectifying this lapse, I present preliminary population-genetic results generated by an agent-based model of Plio/Pleistocene hominid food sharing. SHARE explores the dynamics of a unique conceptual model that treats fragmented closed habitat patches as the loci of hominid social evolution and investigates the altruistic behavior of food sharing using multilevel selection theory. Data collected from artificial societies of hominid foragers demonstrate that specific levels of ecological patchiness facilitate the evolution of food sharing due to the fitness benefits bestowed upon subsistence–related trait groups.
L. S. Premo