We propose an image-based motion tracking algorithm that can be used with stereo endoscopic and microscope systems. The tracking problem is considered to be a time-varying optimization of a parametric function describing the disparity map. This algorithm could be used as part of a virtual stabilization system that can be employed to compensate residual motion of the heart during robot-assisted off-pump coronary artery bypass surgery (CABG). To test the appropriateness of our methods for this application, we processed an image sequence of a beating pig heart obtained by the stereo endoscope used in the da Vinci robotic surgery system. The tracking algorithm was able to detect the beating of the heart itself as well as the respiration of the lungs.
William W. Lau, Nicholas A. Ramey, Jason J. Corso,