Graph matching is an essential problem in computer vision and machine learning. In this paper, we introduce a random walk view on the problem and propose a robust graph matching algorithm against outliers and deformation. Matching between two graphs is formulated as node selection on an association graph whose nodes represent candidate correspondences between the two graphs. The solution is obtained by simulating random walks with reweighting jumps enforcing the matching constraints on the association graph. Our algorithm achieves noise-robust graph matching by iteratively updating and exploiting the confidences of candidate correspondences. In a practical sense, our work is of particular importance since the real-world matching problem is made difficult by the presence of noise and outliers. Extensive and comparative experiments demonstrate that it outperforms the state-of-the-art graph matching algorithms especially in the presence of outliers and deformation.