Virtual multicasting (VMC) combines some of the benefits of caching (transparency, dynamic adaptation to workload) and multicasting (reducing duplicated traffic). Virtual multicasting is intended to save bandwidth in cases of high load, resulting from unpredictable but high demands for similar traffic. However, even in cases where relatively low fractions of traffic are similar (hence offering few opportunities for VMC), introducing VMC can have a disproportionate effect on latency reduction because of the generally beneficial effect of reduction in traffic, including reduced contention. This paper presents results of a study of latency reduction across a range of workloads, illustrating the potential for VMC even in situations where the extent of overlapped traffic is light.